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Ultrasonic relaxation studies of the vitreous 
system M o - P - O  in the temperature range 
4 to 300K 

B. B R I D G E ,  N. D. PATEL* 
Department of Physics, Brunel University, Uxbridge, Middlesex UB8 3PH, UK 

A detailed study of ultrasonic relaxation in the entire vitreous range of the glass system 
MoO3-P2Os (0 to 83mo1% MOO3) is presented. Pulse echo techniques were employed in the 
frequency range 15 to 135 MHz and temperature range 4 to 300 K. Ultrasonic absorption 
peaks were observed at various temperatures between 74 and 128 K depending upon glass 
composition and operating frequency. The composition dependence of the position and 
overall shape of the loss peaks was analysed in terms of an assumed loss of the standard 
linear solid type, with low dispersion, and a broad distribution of Arrhenius-type relaxation 
times with temperature-independent relaxation strengths (two-well formalism with a broad 
distribution of asymmetries). After a brief review of two-well formalism, a simple central force 
model of the microscopic origins of two-well systems is presented, to demonstrate that (in 
contrast to what has often been assumed previously) there is no need to postulate bond direc- 
tionality effects to account for "acoustically active" two-well systems in glassy materials. Also 
given is a quantitative model of the deformation potential arising in phenomenological models 
of acoustic loss produced by two-well systems. The shape of the loss peaks (i.e. the shape of 
the relaxation spectra), and the mean activation energy determined from the frequency depen- 
dence of the loss-peak temperature (Vp), are both strongly composition-sensitive. Furthermore, 
they are found to correlate with the elastic properties of the glass system and the assumed 
bond force constants. The conclusion thus arrived at is that the acoustic loss is a property of 
the vitreous network as a whole rather than due to a second-order effect like the presence of 
dangling bonds or polar groups, or to network holes etc. Finally a microscopic phenomeno- 
logical model is developed to account for the composition dependence of the observations. In 
particular, semi-theoretical formulae are used to express Vp and the fractional number of two- 
well systems per oxygen atom, N, as a function of the bulk modulus and a mean cation-anion 
stretching force constant. Considerable success was thereby achieved in explaining the con- 
trasting behaviour of Vp and N. 

1. In t roduct ion 
Peaks in the temperature dependence of acoustic wave 
absorption in inorganic oxide and halogenide glasses 
occurring in the range 4 to 300 K have long been 
attributed to loss mechanisms of the standard lin- 
ear solid type, with low dispersion (SLSLD) and 
Arrhenius-type relaxation times. Formally the loss has 
been ascribed to the presence of particles or groups of 
particles moving in double-well potentials, and experi- 
mental values of activation energy and attempt fre- 
quency suggest wells and particle dimensions of 
atomic orders of magnitude, i.e. we are talking about 
the motions of single atoms or small groups of atoms. 
However, little progress has been made towards a 
quantitative understanding of the loss process in terms 
of assumed atomic configurations. Our work was 
commenced on an assumption that a study of how the 
loss behaviour varies with gradual and wide-ranging 

*Present address: MacMaster University, Department of Metallurgy 
L85 4L7, Canada. 

changes in glass composition could produce the key to 
an understanding of the microscopic origins of the 
loss. Much of the past literature has been focused on 
the effects of gross compositional changes, though a 
detailed study of gradual composition changes has 
been given for borosilicate glass [1]. The following 
presentation is the first detailed study of two-well 
systems in a complete phosphate glass system. The 
results are interpreted in terms of atomic ring sizes and 
bond force constants. Initially the formal relation- 
ships required for our data analysis, widely dispersed 
in the literature, are collected together, and we then 
present a central force model of the magnitude of the 
two-well barrier heights and deformation potential 
occurring in the phenomenological theory. 

2. G e n e r a l  t h e o r e t i c a l  c o n s i d e r a t i o n s  
On thermodynamical grounds alone [2] it can be 
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Figure 1 Two-well system with barrier height V and asymmetry A. 

shown that for a system of n particles per unit volume 
moving in identical double-well potentials of barrier 
height V (Fig. 1), the internal friction is 

2~c Q i _ 
09 
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where 

= %e v/kr(1 + e A/kr) (2) 

Here k is Boltzmann's constant, T is the absolute 
temperature, ~ is the acoustic wave absorption coef- 
ficient in nepers per unit length, 09 is the angular 
frequency, c is the phase velocity for 09 ~ 0, �9 is the 
relaxation time, Co i is the classical vibration frequency 
(attempt frequency) for the particle in either well, A is 
the free-energy difference between corresponding 
particle states in the two wells, i.e. the separation of 
the well minima; and the "deformation potential" D is 
the energy shift of the two-well states in a strain field 
of unit strength, averaged over all possible well 
orientations. 

In the case of symmetric wells, or when the asym- 
metry A is such that A/kT < 1, Equations 1 and 2 
simplify to 

_ 2 ~ c  _ n D :  { 09~ Q-1 
09 4~c: k T "\ 1 + 092 ~: } 

Invariably experimental low-temperature loss peaks 
are too wide to be explicable in terms of a single 
relaxation process of the above kind. If  we assume a' 
distribution of barrier heights but take A = 0 
(symmetric case), and D to be constant 

Q-1 D 2 i~ 09vn(V) d V 
- 4Qc2kT3 o 1 71- (-02"/72 (3) 

where n(V) d V is the number of  two-well systems with 
barrier height in the range V to (V + d V). As shown 
subsequently in Section 4, D is probably not inde- 
pendent of V as assumed, but its variation is slow 
compared with that of v and it is satisfactory for 
present purposes to keep it outside the integral sign, 
The principal feature of the symmetric case is the 
inverse proportionality of relaxation strength to 
absolute temperature. However, if one also assumes a 
distribution of asymmetries A we have 

Q-I 2~ _ D2f~~ d ( l ) 
-- 09 pc 2 ~ 1 + e a/kr 

COT 
x 1 + 092 T2 n(k)n(V) d A d  V (4) 

where n(A) dA is the number of  two-well systems with 
barrier height in the range V to (V + dV), having 

asymmetries in the range A to (A + dA). The range of 
integration for A is taken as 0 to oe because the 
averaging of D over all orientations (Section 4) allows 
for both positive and negative A. Assuming a cut-off 
in the integration at A = 2kT (the contributions to 
the integral being small for A ~ 2kT), and taking 
n(A) = no, a constant independent of both A and V, 
one finds [3] that 

09~n(V) d V 
Q l _ D22n0fo 1 + 092r 2 (5) 

Qc 2 

So Q- 1 now consists of a distribution of SLSLD-type 
relaxation terms with temperature-independent relax- 
ation strengths. Equation 5 takes the same form as 
first proposed empirically (but lacking an explicit 
expression for the constant in front of the integral) by 
Anderson and B6mmel [4], and used many times 
subsequently [5, 6], 

Apparently if the upper limit in the distribution of 
asymmetries is ~ kT  where presumably T is the high- 
est temperature considered experimentally, Equation 
3 will hold, whilst if the upper limit to A is ~ kT 
Equation 5 will hold. In the absence of a satisfactory 
quantitative theory of the origin of two-well systems it 
is not obvious which of the two equations, which are 
effectively at opposite extremes, hold for any given 
material. It is obvious that in an amorphous material, 
the local environment to the left of a double well of 
atomic dimensions will generally differ from the 
environment to the right, so the presence of asym- 
metries A will be a normal occurrence. However, 
whereas V is caused by the interaction of nearest- 
neighbour atoms, A represents the effects of next- 
nearest neighbours (Section 3). Thus it is plausible 
that on average A < V, in which case the condition 
A < kTmight  hold and Equation 3 applies. Clearly it 
makes sense to try fits of experimental data to both 
equations. In the present paper, however, we shall 
consider only Equation 5 which can be written in the 
form 

~o~ C(V) 09r dV Q-I 
J0 1 + 092,[.2 (6) 

where 

n(V) = ( ~c2 ~ C(V) (7) 
\ D 2 2n0// 

so that the total number of two-well systems (loss 
centres) per unit volume is 

F c:l 
n = fon (V)  dV = kD22n0 j f o  C(V)  dV (8) 

Gilroy and Phillips [3] have proposed that n(V) 
takes the form 

n(V) = ~ e x p  (9) 

where Vp is the function (which they related to Tg) 
which determines the shift of the loss peak according 
to the Arrhenius law 

c o % e x p ( ~ )  = ' 
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However, one can seek to determine the n(V) function 
entirely by experiment by fitting Equation 6 to the 
observed temperature and frequency dependence of 
Q-I .  For  this purpose it is more convenient to replace 
the integral by a sum of the form 

where 

CiooTo  e f / k  T " 
Q i = ( l o )  

ci v)/6 v = c(v) 

g V being the interval between the energies in con- 
secutive terms in the sum, i.e. 6V = Vt - V,_I. So 

Z ci : c(v) dV ( l l )  
i 

It is of considerable interest to estimate the com- 
positional dependence of n experimentally, both 
absolutely and expressed as a fraction of  the poss- 
ible number of  two-well systems per unit volume of  
material. However, these estimates will depend on the 
choice of  n 0. Gilroy and Phillips [3] argue that n(A) 
must be symmetrical about A = 0 and that since the 
width of  this symmetrical distribution should be 
approximately equal to the energy available at the 
glass transition temperature, for temperatures well 
below Tg, n(A) will be roughly similar to a constant no. 
Following these authors, if n(A) is assumed equal to no 
for A ~< Vp and A = 0 outside this limit we have 

no = Vp -I (12) 

and substitution in Equation 8 gives 

{ecZVp'] foC(V) dV (13) 
n - = \ 2 D 2  j 

Although it is hard to justify this ad hoc assumption 
for the form of  n(A), it has the advantage that n is 
expressed in terms of  the experimental parameters W 
and ~C(V) d V of  the acoustic loss process alone. The 
purpose of  choosing a specific form for n(A) is to make 
possible a discussion of  the compositional dependence 
of two-well systems, and no more. The only quantity 
in Equation 13 which is not directly measurable from 
acoustic experiments is D. Values of  between 1 to 
1.5 eV have been variously proposed in the literature 
on empirical grounds involving ultrasonic and specific 
heat data at very low temperatures. An original model 
of  D, relating it to two-well parameters (Section 4), 
gives a figure of  this order but slightly smaller. 

3. Microscopic origins of two-well  
potential systems according to 
central force theory 

3.1. General discussion 
We are looking for the possible causes of  double well 
systems with barrier heights of  ,,v 0.1 eV, which occur 
copiously in amorphous structures but infrequently in 
near-perfect crystals. Such low activation energies rule 
out the translational motion of atoms or groups of  
atoms arising from the rupture of  atomic bonds. 
Moreover, the size of  the attempt frequency 1/% 
( ~ 1013 sec-l)  seems to point to the motion of  particles 
of atomic size in potential wells of  atomic dimensions. 

Consider a three-dimensional network of  A - O - A  
bonds (A = cations, O = anions for example the 
oxygen atom), where the A - O - A  angles are not 
necessarily 180 ~ For  a perfect crystalline arrangement 
all A - A  separations, and A - O  separations (bond 
lengths) are the same. And for this case central force 
theory predicts that all anions (or equally the follow- 
ing remarks apply to all cations) move in identical 
symmetric interatomic wells. Irrespective of  the com- 
plexity of  the vibration which the anion may execute, 
the wells have a single central minimum correspond- 
ing to the equilibrium positions of  the anions, and are 
harmonic for sufficiently small O vibrations, though at 
larger amplitudes anharmonic effects appear as the 
wells become flat bottomed. For the amorphous case 
there will always be a distribution of A - A  separations 
with values both greater and less than the equilibrium 
(crystalline) value; but with the average size exceeding 
the latter by a factor ,-~ @/3 where 6Q is the density 
difference between amorphous and crystalline states. 
Although this distribution alone is sufficient to define 
the amorphous state, in some materials there will also 
be a distribution of A - O  bond lengths about the 
crystalline value. We now examine a number of  simple 
possible transverse and longitudinal motions of  the 
anions in such a material, according to simple classical 
central force theory. 

U 

so that 

3. 1.1. Longitudinal vibrations 
It is generally accepted that to a first-order approxi- 
mation the mutual potential energy of  two atoms in a 
diatomic molecule takes the form 

- a  b 
U = - - r  + r = (14) 

where 6 < m < 12, and a and b are constants for a 
given molecular type, which can be obtained from the 
relationships 

U0 = ro m ' =,o 

where b = (aW o - i)/m. Here U0 is the bond energy and 
r 0 is the equilibrium interatomic separation. 

Next we consider a linear arrangement of  three 
atoms consisting of  an anion in the middle of  two 
cations (or vice versa) separated by a distance R. We 
assume the potential energy of  the system to be given 
by a superposition of  two potentials of  the form of  
Equation 14, i.e. 

(a - - +  + + 
r r (R - r) m 

(r' ' )  U = - a  + (2er 0 - r) 

+ b ~ + (2er0 - r) m (16) 

where e = R/2r o is the elongation factor, i.e. the A - A  
separation divided by the equilibrium separation 2r 0. 
The quantity U/2 may be regarded as the mutual 
potential energy of half the O atom plus one of the A 
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Figure 2 Potential wells for motion of oxygen atoms parallel to 
P-O-P, for various P-P distances greater than the equilibrium 
"crystalline" value, in P205 glasses, calculated from Equation 16, 
which assumes a 180 ~ P-O-P angle. Central barrier heights are 
0.11 and 0.35 eV for elongations of 40% and 60%, respectively. 

atoms, and is taken as the potential in which the O 
a tom moves, each A a tom being considered infinitely 
heavy. I t  should be mentioned that a term allowing for 
the direct interaction between the A atoms has been 
ignored. Since i t  is a function of  R only, it does not 
affect the variation of  U with r and is therefore 
of  no interest to us. Of  specific interest to us is the 
P - O - P  system for which we take U0 = 6.18eV, 
r0 = 0.156nm, so that with m = 9 we obtain 
a = 1.085eVnm and b = 4.229 • 10-8eVnm 9. 

Fig. 2 illustrates the variation of  U/2 with position 
r of  the oxygen a tom O, for various values of  e. I t  will 
be observed that the expected single minimum poten- 
tial occurs for e < 1 and also for values of  e slightly 
greater than unity. However,  a two-well potential 
starts to develop for e values above 20%, and for an 
elongation of  38% a potential barrier occurs of  the 
correct order of  magnitude (0.1 eV) to explain the 
low-temperature loss in amorphous  materials. 

Pure P205 glass is about  16% less dense than the 
high-temperature crystalline form of  P205, corre- 
sponding very roughly to an average P - P e l o n g a t i o n  
of  6%, so clearly only a small fraction of the P - O - P  
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Figure 3 Potential wells for various O-O distances with the four 
lowest proton states of the system HsO ~ . 
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units have the necessary elongation to provide acous- 
tic relaxation, on the above model. However, we 
shall subsequently find on the analysis of  our data 
that according to Equation 13 only a small number  
(expressed as a fraction of the number  of  oxygen 
atoms per unit volume) of  two-well systems are in fact 
needed to account for the observed losses. Moreover,  
we suggest that our crude model overestimates the 
elongations needed to produce two-well potentials. 
We base this suggestion on the published results of  a 
more rigorous, quantum-mechanical  calculation of 
interatomic two-well potentials for the hydrogen 
dimer (H2OOHOH2) + [7, 8]. These data (Fig. 3) 
predict barrier heights of  ~ 0.1 eV for elongations of  
only 5% (0.25nm O - O  separation compared with 
0.239 nm equilibrium separation). I f  such a figure 
holds in the P205 system, then a substantial fraction o f  
the P - O - P  units could be taking part  in the loss 
process. 

3. 1.2. Transverse vibrations 
The potential energy of  a linear arrangement of  three 
atoms A - O - A  when the O a tom is transversely 
displaced by an amount  d (Fig. 4) is, using previous 
notation, 

- 2 a  2 b '  

U - (e2r2o + d2)m + (e2r ~ +.d2)m~2 (17) 

Taking the same value of a, b and rn as previously, the 
variation of U/2 with d for various values of  e, for 
the P - O - P  system, is shown in Fig. 5. For  e > 1 
(elongation) a single minimum only i n  the potential 
seen by the vibrating oxygen occurs, but for e < 1 
potential wells of  the order of  magnitude required to 
explain low-temperature acoustic loss (,,~0.1eV) 
occur even for a very small contraction of  ~ 6% 
(e = 0.94), suggesting that a large fraction of the 
O - P - O  units in P205 glass could be contributing to 
acoustic relaxation by means of  transverse two-well 
vibrations. 

3. 1.3. Two- well systems with non- 180" bond 
angles 

Although the directionality of  bonds plays no part  in 
the preceding theory, we did, for simplicity, assume a 
linear three-atom arrangement equivalent to 180 ~ 
bonds. However,  the theory can readily be extended to 
the case of  A - O - A  angles of  less than 180 ~ Hence for 
the longitudinal vibrational mode shown in Fig. 6 
the variation of the mutual potential energy of  the 
A - O - A  system with O position d is given by 

( - a  ~ ) ( - a - ~ 3 )  U = - -  + + - -  + (18) 
f 2 r 3  

where ~ = d~ + (erl - d)2; r~ = d~ + (erl + d):;  
do = r0 cos00; and r~ = r0 sin00. 

Figure 4 A linear arrangement of three atoms A-O-A when the 
oxygen atom is transversely displaced by an amount d. 
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Figure 5 Potential wells for motion of oxygen atoms perpendicular 
to the P - O - P  plane, for P - P  spacings less than the equilibrium 
"crystalline" value, in phosphorus pentoxide glass (a) calculated 
from Equation 17 which assumes a 180 ~ P - O - P  angle and (b) 
calculated from Equation 19 which assumes P - O  P angle = 140 ~ 
(the crystalline value). Central barrier heights are (a) 0.066 and (b) 
0.087 eV for contractions of 3%; and (a) 0.325 and (b) 0.348 eV for 
contractions of 6%. 

Hence it can be shown that a double well appears 
when the A - A  separation is greater than the equilib- 
rium value 2r 0 sin0o, by some critical value of the 
elongation factor e. We have confirmed this (Fig. 7) 
for the P - O - P  system using the values of a, b and m 
given previously, and taking 00 = 70 ~ (corresponding 
to the P - O - P  angle in hexagonal crystalline P 2 0 5 ) .  It 
will be observed that a two-well potential starts to 
develop for e values above 25%, and for an elongation 
of 50%, a potential barrier occurs of the correct order 
of magnitude (0.1 eV) to explain the low-temperature 
loss in amorphous materials. 

For the case of the transverse vibrational mode 
illustrated in Fig. 8, the variation of the A - O - A  
potential energy with O position d is given by 

- -  2a 2b 
U - + - -  (19) 

r r m 

where r 2 = er~ + d~ + d2; rl = ro sinOo; do = 
r o cos0o. Here we expect that for e > 1, i.e. an A - A  
separation greater than the equilibrium value of 
2r 0 sin00, only a single minimum occurs in the U/2 
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Figure 6 Longitudinal vibration of oxygen atom with non-180 ~ 
ca t ion -an ion  cation bond angle, showing the coordinate system 
used to calculate two-well barrier heights. 

against d curve, but we suggest that a double-well 
potential will appear in this curve for some critical 
value of A - A  separation less than 2ro sin00 (i.e. 
e < 1). We have confirmed this (Fig. 5b) for the 
P - O - P  system using the values of a, b, rn and 00 given 
previously. It will be noted that a barrier height 
of about 0.1 eV, sufficient to account for the low- 
temperature acoustic loss in phosphate glasses, occurs 
for a contraction of only 5% (i.e. e = 0.95). 

3.2. C o m m e n t s  on the  mo d e l s  
(i) It will be noted that the above models predict 

two-well systems and associated low-temperature 
acoustic loss peaks in all amorphous materials, since 
they make no assumptions at all about bond type 
(directionality). In our opinion this conclusion is 
supported by the experimental evidence to date. In 
most of the amorphous materials on which low- 
temperature acoustic absorption measurements have 
been made, loss peaks attributable to double-well 
systems (i.e. standard linear solid, low dispersion, 
Arrhenius relaxation times, etc.) have indeed been 
found. In a few cases involving chalcogenides [9], no 
peaks have been observed. However, this could be 
because the distribution of barrier heights was so 
broad as to flatten out the peak, at the operating 
frequency employed. If  we are right in this view the use 
of higher operating frequencies could reveal the 
two-well loss peaks, providing ultrasonic detection 
were still possible at the increased levels of absorption. 
Alternatively, the peaks might be masked by the 
presence of other loss mechanisms, for example the 
thermoelastic loss in metallic glasses. 

(ii) Central force theory evidently predicts two-well 
systems even when the A - O - A  bond angle differs 
substantially from 180 ~ in contradiction with past 
literature [10, 11] where straight ca t ion-anion bonds 
were assumed to be required to explain transverse and 
longitudinal two-well potentials, respectively. 

(iii) It will be observed that in the case of transverse 
anion vibrations, the cat ion-anion separations in 
each of the two-well minima may in general differ only 
slightly ( ~  1%) from r0 even when the cat ion-cation 
separation is several per cent less than the crystalline 
value. The reason for this is that the displacement d of 
the anion partially cancels the cat ion-cation con- 
traction. In the case of straight ca t ion-anion-ca t ion  
bonds, the bond length when the anion is sited in 
either of the well minima is in fact exactly r 0. Since, 
classically, the anion will only be observable in the 
well minima positions, a transverse double well could 
never show up experimentally in the form of a bond 
length contraction. This result counters Vukevich's 
argument [10] that cat ion-anion bond lengths must 
be substantially shorter (i.e. several per cent) than the 
equilibrium (crystalline) value, for transverse two-well 
systems to occur on central force theory. Much of 
Vukevich's case against central force theory was based 
on a presumption that the amorphous state of silica 
was produced by means of a broad distribution of 
S i - O- S i  bond angles about the cristobalite value of 
140 ~ without any change in Si -O separation. It is true 
that the Si -O separation corresponding to the peak of 
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Figure 7 Potential wells for motion of oxygen atoms for 
various P - P  distances greater than the equilibrium 
"crystalline" value in phosphorus pentoxide glass, cal- 
culated from Equation 18 which assumes P - O - P  
angle = 140 ~ (the crystalline value). Central barrier 
heights are 0.08 and 0.27eV for elongations of 40% 
and 60%, respectively. 
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the Si -O pair distribution function [12] is almost the 
same as in cristobalite. However, the half-width of the 
distribution function is about 6%, consistent with a 
substantial fraction of S i -O bonds being contracted 
or elongated by several per cent. 

(iv) In the case of longitudinal vibrations, however, 
in common with Strakna [11], we find that on central 
force theory two-well systems are possible only for 
substantial elongations of A - O  distances. But sub- 
sequent calculations based on Equation 13 (and other 
arguments given by Vukevich [10] suggest that only a 
very small fraction ( ~  1%) of two-well systems are in 
any case required to explain the observed loss. Such a 
small proportion of stretched bonds, irrespective of 
the degree of elongation, would never be identifiable 
as a separate entity on an X-ray radial distribution 
function (r.d.f.) plot, because of the extent of the 
overlap of the various pair distribution functions 
A - O ,  A - A ,  (A-2nd  O) etc. What  we are saying is 
that the highly elongated bond model must be enter- 
tained as a possibility, simply because it cannot be 
ruled out from experimental r.d.f, data. Strakna's own 
arguments [11], based on an interpretation of low- 

(\) o' 

r.-" 

- r 1 - - ~  e r  1 _- 

Figure 8 Transverse vibration of oxygen atoms with non-180 ~ bond 
angle, shovging the coordinate system used to calculate two-well 
barrier heights. 
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temperature specific heat data, required that 10 to 
20% of Si -O bonds in vitreous silica be elongated by 
20%. Such an occurrence should show up as two 
separate S i -O peaks (for each of the two-well pos- 
itions) on r.d.f, plots, and he claimed to find such 
peaks in X-ray data. We now know that this con- 
clusion was based on inaccurate X-ray data, now 
superseded. 

(v) On our central force model, transverse two-well 
potentials of barrier height near to Vp are generally to 
be associated with A - O  separations only slightly less 
than r0, i.e. assuming that the latter corresponds to 
the peak of the A - l s t  O pair distribution function 
P(rA-O), the wells are to be associated with separations 
well up the shoulder on the lower side of the peak. On 
the other hand, longitudinal two-well potentials are to 
be associated with A - O  separations lying in the tail 
on the high side of the peak. Thus the most "acous- 
tically active" two-well systems arise from the two 
shaded regimes of P(rg_o) shown schematically in 
Fig. 9a. Let us write n(V) = nT(V) + nL(V), where 
the subscripts refer to transverse and longitudinal 
wells, respectively. Now for both kinds of well, barrier 
height increases with IrA-o -- r0l. From the shape of 
P(rA-O) it is clear that nL(V) will decrease only slowly 
with increasing [rA-o -- rot and therefore with increas- 
ing V. On the other hand, nT(V) must decrease very 
rapidly under the same condition. Combining these 
two functions (Fig. 9b), the exponential form of the 
n(V) against V plot proposed by Equation 9 (and 
found experimentally if Equation 5 is used) can, plaus- 
ibly, be reproduced. The low "cut-off' '  value of nT(V) 



P( rA_o) ,  

(a) 

r~ 

n(V) 

rA>_O 
(b) 

L 

' ) +nT(V)  

v > 

Figure 9 (a) Pair distribution function for A-lstO 
separations (A = anion, O = cation) in an oxide 
glass. Shaded regions are to be associated with trans- 
verse (T) and longitudinal (L) two-well systems with 
the "average activation energy" V w (b) Form of distri- 
bution function for two-well systems proposed from 
(a). 

at V = 0 stems from the fact that V remains at zero 
until IRA_ O - -  %[ has increased to a substantial size. 
The value of  nL(V) at V = 0 is much higher, since 
transverse double wells arise as soon as IRA o - r0[ 
exceeds zero. 

(vi) For  any one two-well system A - O - A ,  further 
O atoms to the left and right of  the A atoms will 
generally be situated at slightly different distances 
f rom the latter. Thus on our simple central force 
model a distribution of  asymmetries A will appear  as 
a second-order (next-nearest neighbour) effect. 

4. Theoret ica l  expression for  
d e f o r m a t i o n  potent ia l  D 

Attempts to derive a fundamental  formula for D have 
not yet been reported in the literature. The value of  
about  1 eV widely quoted, assumed independent of  
activation energy, and used in our previous calcu- 
lations, has been obtained experimentally f rom very 
low temperature ( <  4 K) specific heat and ultrasonic 
data on some glasses. The following simple original 
theory predicts a deformation potential which is an 
increasing function of  two-well barrier height V. I f  
experimental average activation energies are sub- 
stituted into our formula, potential values in rather 
close agreement with the empirical values are obtained. 

The number  of  c a t i o n - a n i o n - c a t i o n  units 
( A - O - A  units) in 1 m 3 of glass is n b N a / m  , where Na 
is Avogadro 's  number  (per kilomole), M is the mass of  
one kilomole and n b is the number  of  A - O - A  units 
per formula unit. 

(al 

~~ -O-A 

\ ~  6y . . . . . ~ Z )  

~. : . -  , > 0 w / - . F  

Fo : : 

\ . . j  

~'L + ~IL "~r':----1,'-L * ~zL ~, 
n=l .... 0----~ 6U+ I__._O_.__ I 

< 6y 
(d) 

Figure i0 Variables considered in a treatment of the deformation 
potential. 

The number  of  these units intersecting any cross- 
section of  unit area (m 2) is nbNaQf~x/m , where 6x is the 
A - A  separation (Fig. 10a). 

Now assuming a continuum, the force field per unit 
area due to the applied stress field is g = qe, where e 
is the strain and the elastic modulus q = K + (4/3)G 
for a longitudinal wave, K and G being the bulk and 
steel moduli, respectively. So assuming a continuum, 
the force field experienced by one vibrating oxygen 
a tom is q~ 

aw - (20) 
nbNa~Ox/M 

Suppose for a given A - O - A  two-well system the 
minima are separated by a distance 6y, and the line 
joining these minima is inclined to the force field at an 
angle 0, then the work done by the acoustic stress field 
on an oxygen a tom when the latter is thermally acti- 
vated from one well to another, is (Fig. 10b) 

qe cos 06y 
a w cos 06y - (21) 

nbN~QOx/M 

Compare  now with the Jfickle et al. [2] definition of  
deformation potential, i.e. that the shift in the minima 
of the two-wells due to the acoustic interaction is 

6U = De (22) 

Compar ing  Equations 21 and 22, we find that  for the 
two-well system under discussion 

(&) ,, D = q ~xxC~ 0 (23) 

An average value of deformation potential appro- 
priate to a macroscopic glass sample is obtained by 
averaging over all possible values of  10[. I f  we assume 
equal probabilities for the A - O - A  lines to occur in 
any orientation relative to the field direction (as to be 
expected for an amorphous  i.e. isotropic material), the 
average value of  Icos0l is 1/2. So 

_ q M 6y (24) 
2 nbN,~ 6x 

where it is emphasized again that  fix = normal 
ca t ion-ca t ion  separation and 6y = separation of  
minima in the two-well potentials. 

Since the barrier height V increases with 6y (Figs 2, 
5 and 7) the deformation potential will increase with 
activation energy. 

To find the order of  magnitude of  D given by our 
theory we consider a few specific examples below. 
Values of  q and e are taken f rom Table I in all cases. 
In addition, for SiO2 and P 2 0 5  glass/% is assumed to 
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be 2 and 3, respectively, neglecting non-bridging 
bonds in the case of P205. 

4.1. Si02 glass 
On the cat ion-cat ion elongation model, 5y for a two- 
well potential of  barrier height equal to the average 
activation energy (1200 kcalmo1-1 = 5021 kJ mol - t )  
is 0.042 nm (Table I of [11]). So taking 6x = 0.32 nm 
for the normal Si-Si  separation, we find D = 0.73 eV. 
On the other hand, if the cat ion-cat ion contraction 
model is taken, the value of 6y (Fig. 10c) correspond- 
ing to a bond angle shift of _ 6 ~ from normal (which 
Anderson and B6mmel [4] claimed produced a barrier 
corresponding to the average activation energy of the 
observed acoustic loss), is 0.0334nm. From this we 
find D = 0.6 eV. 

wave is present, corresponding levels in each well, i.e. 
the kinetic energies for each quantum level (n value) in 
the two wells shift by an amount  

5U = 2(KE)(el - ~2) ~ j ( 2 K E ) e k f x  (26) 

where el and e2 are the strains in each well region, and 
in the second equation on the right hand side, 
e ~ el ~ e2, k is the wave vector for a sinusoidal 
wave, 5x is the well separation, and the imaginary num- 
ber j = ( -  1) 1/2 denotes that 5U is in phase quad- 
rature with e. Comparing with the Jfickle et al. [2] 
definition of  deformation potential, 

O = j ( Z K E ) k f x ,  (27) 

and its magnitude is easily shown to be extremely 
small compared with 1 eV, at megacycle frequencies. 

4.2. Pz05 glass 
As data from the literature are unavailable, we have 
estimated values of 6y (corresponding to well barrier 
heights equal to the average activation of  the observed 
acoustic loss) from our own two-well potential 
models. On the elongation model, extrapolating from 
Fig. 2, we find that 6y, corresponding to an average 
activation energy of about 0.15 eV, is about 0.06 nm. 
Taking x = 0.312nm, this yields D = 0.77eV. On 
the other hand, extrapolating from Fig. 5a, the value 
of  5y corresponding to an average activation energy of  
0.15 eV on the contraction model, is about 0.05 nm. 
This result gives D = 0.65 eV. 

As V and A --. 0 the acoustic loss for n two-well 
systems approaches the value ~ = nDZo92%/8~c3kT 
(with ~oz0 ~ 1). The single well corresponding to this 
limit will generally be anharmonic, being flatter bot- 
tomed than a harmonic well in the case of  elongated 
cat ion-cat ion spacings, and with steeper walls than a 
harmonic well in the case of contracted ca t ion-ca t ion  
spacing. So it is tempting to identify the above attenu- 
ation limit with the attenuation due to p h o n o n -  
phonon interaction in the limit o92 ,~ 1, i.e. 

= Cv T72%/2Qc 3, where Cv is the heat capacity per 
unit volume, 7 is some kind of  average Gruneisen 
constant for the phonon modes in the material, and "Cth 
is the mean lifetime of thermal phonons. In this case 

D ~ 7T for V--* 0 (25) 

The value of  D calculated by substitution of  appro- 
priate constants is extremely small compared with 
1 eV. Evidently the coupling in the two-well acoustic 
loss mechanism (D ~ 1 eV) is extremely strong com- 
pared with the p h o n o n - p h o n o n  interaction. 

Compressional waves produce adiabatic defor- 
mation of  the quantum states in each potential well, 
and a corresponding contribution to the deformation 
potential might be expected. However the effect is very 
small, as can be shown from the following simple 
analysis of  a one-dimensional rectangular-shaped 
double well (Fig. 10d). The permitted kinetic energy 
levels for each well in the absence of  the wave are 
KE = n2h2/8mL2, where n is a quantum number 1, 2, 
3 . . . ,  h is Planck's constant, m is the particle mass, and 
the remaining notation is as in the figure. So when a 

5. Experimental details: acoustic loss 
and velocity (longitudinal wave 
velocity) measurements at low 
temperatures in i o - P - O  glasses 

Acoustic wave loss and velocity for longitudinal waves 
in the range 4.2 to 300 K in M o - P - O  glasses were 
measured simultaneously using standard pulse-echo 
techniques. However, only the loss measurements are 
to be discussed in this paper. Arenberg ultrasonic 
instrumentation (PG 650-C power oscillator, PA 620 
5 to 60MHz preamplifier, VR-720 50 to 230MHz 
amplifier, WA-600-E 5 to 60 MHz video amplifier, 
and ATT-693 1 to 122dB attenuator), was employed 
(Arenberg Sage Inc., Boston, USA). 

Temperature control was effected with purpose- 
built equipment supplied by Oxford Instruments Ltd. 
(Oxford, UK). The cryostat was a low-consumption 
continuous flow type (CF 500), with the standard 
20 mm cylindrical low-temperature chamber enlarged 
to a diameter of 25 mm. 

All operations on the cryostat were performed 
from a mobile pumping trolley containing pumping 
apparatus, flow controller, and temperature controller 
(DTC2). It was not economical in terms of  either time 
or liquid helium consumption to perform measure- 
ments on the large number of  M o - P - O  glasses that 
had been prepared to map out the unusual compo- 
sitional dependence of  physical properties at room 
temperature [13, 14]. Eight glasses were therefore 
selected which (i) spanned the entire vitreous com- 
positional range, and (ii) defined adequately the 
regions in which the other physical properties had 
been found to change rapidly with composition. The 
glass discs of  diameter 1.6 cm and 5 mm thickness had 
end-faces polished optically flat and parallel to 1 to 2 
seconds of  arc, using a Multipol 11 polishing machine 
and a precision polishing jig, adjusted via an autocolli- 
mator  (Metals Research Ltd., Cambridge, UK). The 
specimens were coated with vacuum-evaporated 
aluminium to provide an earth electrode, and allow 
the use of  uncoated X-cut quartz transducers. A single 
15 MHz transducer was employed as both a sender 
and receiver of  pulses and provided all the operating 
frequencies employed by harmonic excitation. Precise 
operating frequencies were adjusted to achieve the 
best exponential decay pattern rather than maximum 
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echo height. Nonaq stopcock grease was found to 
provide a satisfactory bond down to the lowest tem- 
perature employed. Excess grease exuded during the 
adjustment of the transducer-bond specimen com- 
bination for the best echo pattern had to be removed 
carefully with acetone, otherwise bonds were found to 
break at about 130K. 

The average value of the dB differences between 
several pairs of echoes was used in obtaining the 
absorption value either in dB cm- l or dB #sec ~ or in 
terms of internal friction Q-l .  Measurements were 
performed simultaneously at every 5K (_+0.1 K) 
temperature rise, starting from the lowest tempera- 
ture achieved by the cryostat. Such an experimental 
run took about 6h after 0.hh for cool-down, and 
five runs were usually obtainable from a 17-1itre 
Dewar flask of helium. Investigation of each glass 
sample (four runs at different operating frequen- 
cies plus one velocity measurement run) thus con- 
sumed one Dewar of helium. The temperature of the 
specimen was monitored by two pre-calibrated gold-  
chromel copper-constantan thermocouples which 
were attached to a specimen. In all our measurements 
the error in attenuation was _+ 0.5 dB per transit and 
the error in temperature was 4-0.2 ~ C. 

6. Analysis of results: peak shift and 
distributions of relaxation times 

Typical results showing the temperature dependence 
of the absorption at about 44 MHz are illustrated by 
data points given in Figs 1 la and b for all M o - P - O  
glasses of different compositions (see Table I). 

Figs 12a to h illustrate by data points the com- 
paratively small shift in peak temperature with fre- 
quency (compared for example with borate glasses), 
which is characteristic of these glasses. For example, 
Specimen A/2 (29.2mo1% MOO3) shows a shift in 

10-t~50 

4r 

20 

10 

o 

o ~ --~ _,2 C 

oo  

' 1~o 1~o ~ o  60 

(a) TEMPERATURE (K)  

peak temperature from l16K at 14MHz to 139K at 
106MHz. The attenuation, especially at the peak 
temperature, increases rapidly with the frequency, 
and thus limited our measurements up to between 105 
and 135 MHz. 

Plots of log co against inverse peak temperature T ;  l 
(Figs 14a and b) yield straight lines, showing that for 
a given glass the peaks fit an equation of the form 
coz0 exp (Vp/kT) = 1, where z0 and V p  a r e  constants 
determined from the intercept and the slope of the 
lines, respectively. The values of v o thus obtained 
(Table I) are of the same order of magnitude (i.e. 
1013Hz -~) as have been found for other glasses; 
whereas Vp, which decreases with MoO3 content and 
ranges from 0.0698 to 0.123 eV, is much higher than 
the value for vitreous silica (0.05eV) [4]. Fig. 13, 
together with the slow variation of velocity with tem- 
perature (to be discussed elsewhere), suggests that an 
SLSLD type of loss process is operative, as in other 
glasses. But the width of the peaks indicate that a 
single relation time with r = z0 exp (Vp/kT) is an 
inadequate description. Rather, Vp is some kind 
of average over a broad distribution of activation 
energies, and we propose to fit Q- 1 to a distribution of 
the form of Equation 10, with z0 assumed constant. 
The value of the relaxation strength Ci for each 
activation energy V~ was then calculated for all eight 
glasses (Table I). In order to achieve this, 26 acti- 
vation energies (V + 6 V) were selected, ranging from 
about 0.01 to 0.26eV (differing slightly for each 
specimen; see Figs 14a and b), in steps of equal 
intervals of 6V (e.g. 0.0104eV for Sample A/2, 
0.011 eV for Sample A/5 and so on), so that Equation 
l0 represented a close approximation to a continuum 
distribution. Further, 26 different temperatures were 
selected in 10 K intervals starting from 10 K, and 26 
different corresponding values of Q 1 were read off 

10-~5o 

4O 

10 

H 

o o o 

2r 
(b} TEMPERATURE {K) 

Figure 11 (a, b) Temperature dependence of  ultrasonic wave loss in terms of  internal friction at 44 MHz. Circles represent the experimental 
data and solid lines show a theoretical fit to Equation 10 (the latter being an approximation to Equation 5), as explained in the text. MoO 3 
content (mol %) as follows: (A) 29.2, (B) 37.5, (C) 44.2, (D) 47.4, (E) 55.0, (F) 61.6, (G) 69.5, (H) 80.8. 
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the experimental 44 MHz loss curves. Substitution of 
all these Q-I, V and T values into Equation 10, and 
solving the resulting 26 simultaneous equations with 
26 undetermined constants C1, C2,... C26 by com- 
puter programming, the spectrum of relaxation 
strengths for each glass can be obtained. 

Generally an exact solution thus obtained will con- 
tain some negative values of C~, especially at high 
values of (V + 6V), which can have no physical 
meaning. When this occurred the chosen values of V 
and 5 V were adjusted slightly until a solution involv- 
ing only all positive values of Ci was obtained. A 
smooth curve was then drawn through these values. 
To ensure that these values of C~ will give back the 

correct values of ~ (i.e. reproduce the experimental 
Q- l_ T curve), using the same Equation 10, we had to 
further adjust the shape of the smooth Ci against V 
curve. After achieving this, the final graphs of Ci 
against V are presented in Figs 14a and b for each 
glass. 

In addition, the final set of relaxation strengths 
obtained at about 44 MHz for each glass gives a close 
fit (solid lines) to the experimental absorption data 
(full circles) at all other frequencies employed. The 
upper and lower cut-offenergies 0.01 and 0.26 eV used 
in the above analysis have no physical significance, but 
merely relate to the problems of computing. 

Although the overall form of the experimental C(V) 
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Figure 12 Temperature dependence of the at tenuation of longitudinal sound waves in M o - P - O  glasses. Circles represent the experimental 
data and solid lines represent a theoretical fit of the data to Equation 10 (as an  approximation to Equation 5) as explained in the text. MoO3 
content (tool %) as follows: (a) 29.2, (b) 37.5, (c) 44.2, (d) 47.4, (e) 55.0, (f) 61.6, (g) 69.5, (h) 80.8. 
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against V functions follow the general trend suggested 
by Equation 9, i.e. a rapid decrease of 6"(V) with V of 
roughly exponential form, there are important dif- 
ferences in detail. Whereas in these M o - P - O  glasses 
V~ varies linearly with composition, ~C(II) d V displays 
a sharp minimum at 50mo1% MOO3, with some 
evidence of a second turning point (a small maximum) 
in compositional gradient at 66mo1% (Fig. 15). 
Clearly this conflicts with the relation of Gilroy Phil- 
lips [9] (Equation 9) which proposes a systematic and 
monotonic relationship between the two quantities. 
The value of performing composition-dependence 
experiments should now be clear. 

To estimate the total number of two-well potentials 
contributing to the acoustic loss (loss centres) per unit 
volume from Equation 13, we use the glass Q, c, Vp and 
IC(V)dV data given in Table I. For D we adopt a 
nominal value of 1 eV. Expressed as a fraction of the 

number of oxygen atoms per unit volume it will be 
noted that the number of loss centres in these phos- 
phate glasses is two to three times higher than the 
number in vitreous silica. The compositional depen- 
dence of n (Fig. 16) shows evidence of a pronounced 
minimum followed by a weaker maximum at high 
MoO3 content, and seems to be systematically related 
to the compositional dependence of the elastic moduli 
[14], i.e. n decreases as the moduli increase. This is one 
factor which affects our interpretation of data in the 
following sections. 

7. Compar ison  of  the  l o w - t e m p e r a t u r e  
u l t rasonic  loss and re laxat ion spectra  
in m o l y b d e n u m - p h o s p h a t e  and SiO z 
glass 

In Fig. 17 the low temperature internal friction peak 
in our glasses is compared with similar observations on 

3 7 9 4  
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Figure 13 (a, b) Experimentally observed relation between the logarithm of the measurement frequency (co = 2zv) and the inverse peak 
temperature for the attenuation of compressional waves in M o - P - O  glasses. MoO 3 content (tool %) as follows: (A) 29.2, (B) 37.5, (C) 44.2, 
(D) 47.4, (E) 55.0, (F) 61.6, (G) 69.5, (H) 80.8. 

a number of other inorganic oxide glasses [1, 15]. How- 
ever it is of special interest to compare our phosphate 
glasses with vitreous silica, whose low-temperature 
properties have been reported in the literature more 
thoroughly than for any other glass. The ratio of 
n(MoO3-P205 glass) : n(SiO2 glass) is typically about 
1.5 to 2 and is roughly the same as the ratio of the 
corresponding peak temperature losses. However, it is 

of greater interest to explain the much more pro- 
nounced differences in the loss behaviour of SiO2 and 
these M o - P - O  glasses that arise when the tempera- 
ture dependence is considered. For example (Fig. 17) 
in the temperature range 4 to 30 K the Q-~ in our 
glasses with about 50 mol % MoO3 is almost the same 
as that in SiO2 glass. But with increasing tempera- 
ture Q - ~ ( M o - P - O  glass)/Q -~(SiO2 glass) increases 
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Figure 14 (a, b) Relaxation spectrum C~(6 V) against V obtained from a computer fit of the equation Q-l = E~C~ozoeV#~r/(1 + co2z02e2V~/kr) 
to the low-temperature ultrasonic wave loss in M o - P - O  glasses. MoO 3 content (mol %) as follows: (A) 29.2, (B) 37.5, (C) 44.2, (D) 47.4, 
(E) 55.0, (F) 61.6, (G) 69.5, (H) 80.8. Summation intervals 6V = Vi+ , - Vii of 0.0104 eV were used for Glasses A, B, G and H, whilst intervals 
of 0.011 eV were used for Glasses C, D, E and F. SiO 2 data included for comparison have been taken from Anderson and B6hamel [4]. Here 
b V = 0.01 eV and 0.004eV for the upper and lower curves, respectively. 
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Figure 15 Compositional dependence of the low-temperature 
acoustic loss in M o - P - O  glasses, expressed in terms of  (a) the peak 
loss, and (b) the quantity C(V)dV as defined by fitting the experi- 
mental loss to the equation Q - l =  ~C(V)dVo9%eV/kr/(l + 
o92z~e2V/~r). With respect to the numerical integration used in our 
computer  fit C(V) = Ci(6V)/6V. 

rapidly, so that at 150 K the loss in the phosphate glass 
is more than 20 times larger than the loss in vitreous 
silica. This behaviour can be nicely explained in terms 
of the relative shape of  the relaxation spectra (C~(6 V) 
against V curves) of these glasses displayed in Figs 14a 
and b. The spectra are roughly comparable in height 
and shape at sufficiently low activation energies, and 
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Figure 16 Compositional dependence of (a) the number of loss 
centres n (interatomic two-well potentials) operative in the low- 
temperature acoustic loss, and (b) number of loss centres N 
expressed as a function of number of oxygen atoms per cm 3 (in 
molybdenum-phosphate glasses). The solid line is drawn through 
experimental data points and the dotted line is the theoretical curve 
predicted by Equation 37. 
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it is the much longer and thicker tail on the spectral 
distribution of  the phosphate glasses that is respon- 
sible for their (relatively) very high loss at higher 
temperatures, as will be shown in the detailed argu- 
ments below. 

To assist the interpretation of these spectra we first 
consider Fig. 18, which illustrates the overall attenu- 
a t ion  plotted as a function of  T at constant co as a 
superposition of  relaxation terms having a spread of 
activation energies V~, V2... Vii, where for simplicity 
the "relaxation strengths" C~ have been assumed all 
equal to unity. 

It is now clear how this superposition of peaks 
combined with a distribution function Ci(6 V) against 
V, which increases with decreasing V, yields an overall 
curve which has a peak which is steeper on the low T 
side than on the high T side. However, at the moment 
we are interested in the shape and position of the 
individual relaxation terms. It is easily shown that 
the loss peak produced by a loss centre with acti- 
vation energy of  V, occurring at a temperature 
T o = - (V/klncoZo), has a width 

V 1 
AT - k [_Fln(cor0~0.414 ) 1 

] 
ln(c~r0/2.414) _1 

(28) 

at the "half-power points", i.e. the points at which 
the loss has fallen to 1/2 '/2 of the peak value. Corre- 
spondingly, at a temperature T only those loss centres 
having activation energies in the range AV = kAT,  
centred on Vp = - kTlnog~0, may be considered to be 
"highly activated". For  an even distribution of  acti- 
vation energies (i.e. flat C~ against V spectrum) most of  
the overall loss at a temperature T would then arise 
from loss centres having activation energies in the 
range A V. However, the shape of the C~-V spec- 
tra observed in our glasses (and others) throws an 
increased weighting on activation energies of  low 
value so that the loss due to "weakly activated" loss 
centres is significant. Even so it will remain true that 
a significant fraction of  the overall loss at a tem- 
perature T will arise from the energy range A V centred 
on W = - kTlnog~o and the amount of this loss will 
be 

1 C~(6V)AV (29) 
Q2~ "~ 2 6 V  

(where the factor 1/2 arises from the peak value of 
each relaxational term), i.e. we are proposing that the 
loss at a given temperature can be roughly correlated 
with the value of  Ci at a given point of  the Ci against 
V spectrum. 

For  example, at low temperatures like 10K only 
loss centres with V g 0.01 eV are "activated". Inspect- 
ing the relaxation spectra (Figs 14a and b), we observe 
that for this energy the values of  C~(6V) for the 
M o - P - O  glasses and SiO2 glass are of  the same order. 
Correspondingly, by Equation 29 the losses are of  the 
same order, in agreement with practice (Fig. 17). 

On the other hand at a high temperature like about 
200 K only loss centres with V ~ 0.2 eV are activated. 
And inspecting the relaxation spectra in this range we 
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Figure 17 Comparison between the internal friction 
peak observed in a number of inorganic oxide glasses. 
Dashed lines, data are taken from results of other 
workers: GeO 2 and Na20-GeO 2 (Krause and Kurk- 
jian [15]), SiO2 (Anderson and B6mmel [4]), B203 and 
Na20-B203-SiO 2 (B/O) (Maynell et al. [1]). Solid 
lines are from Mo P - O  glasses of this study. Figures 
denote mole fractions. 

find that Ci(SV) for phosphate glasses is about 20 
times the value for vitreous SiO2, in close corre- 
spondence with the observed loss levels. 

8. Interpretation of the compositional 
dependence of low-temperature 
acoustic loss in glasses 

Essentially we shall use the central force model of the 
origin of acoustically active two-well systems, des- 
cribed in Section 3. We regard M o - P - O  glasses as 
three-dimensional networks [13, 14] in which P - O - P ,  
P - O - M o  and M o - O - M o  bond angles will have a 
spread of values around the fixed values obtaining in 
crystalline molybdenum phosphates. Correspond- 
ingly, there will be a spread of cation-cation (P-P, 
M o - P  and Mo-Mo)  spacings, these spacings being 
smaller than the equilibrium (crystalline) values for 
bond angles more acute than normal, and larger for 
bond angles straighter than normal. As before it will 
be acceptable to talk just about the motion of oxygen 
atoms - a reasonable viewpoint given the relative mass 
of the molybdenum and phosphorus atoms. On cen- 
tral force theory a distribution of two-well systems for 
transversely vibrating oxygen atoms will arise from 
the spread of cation-cation spacings. And if there is 
also a spread of bond lengths, a distribution of longi- 
tudinal two-well systems will also occur. Our inter- 
pretation must take place without radial distribution 
function data (X-ray or neutron diffraction), since 
these are unavailable for phosphate glasses. 

8.1. Effect of number of oxygen atoms per 
unit volume (oxygen density) 

If the above simplification of interatomic two-well 
systems in terms of oxygen atoms vibrating between 
static heavier atoms is correct, one would expect that 
the total number of acoustically active two-well 
systems (total number of loss centres) will be pro- 
portional to oxygen density. 

8.2. Effect of atomic ring size 
In the subsequent interpretation of the dependence of 
two-well systems on glass composition, it will be con- 
venient to envisage the structure of oxide glass as a 
three-dimensional network of atomic rings, where a 
ring is the shortest closed circuit of atomic bonds [16]. 

The variability of the P - O - P ,  P - O - M o  and 
M o - O - M o  bond angles means that there will be a 
spread of atomic ring sizes in the glasses. And since the 
production of the amorphous state from a given crys- 
talline state always leads to a density decrease, we 
know that the average atomic ring size in a given 
M o - P - O  glass will be larger than the ring sizes 
occurring in the nearest equivalent crystalline molyb- 
denum-phosphate, although there will be some rings 
smaller than the crystalline one. 

There are clearly more opportunities to achieve a 
distribution of cation-anion-cation angles in large 
rings than in small ones. For example a sequence of 
180 ~ bonds will produce a very large ring, whilst 
relatively few 180 ~ bonds will be possible in a very 
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Figure 18 Illustrating the overlap on the temperature 
axis of a number of SLSLD processes of different 
relaxation time. 
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small ring. Further, angles more acute than the 
average are just as possible in a large ring as in small 
rings, given that they will be compensated by other 
angles straighter than average in the same ring. So 
we expect both the number of distorted (elongated/ 
contracted) cation-cation spacings and the average 
degree of elongation and contraction to increase with 
average ring size. Thus we propose that both the 
number of two-well (acoustic) loss centres, and their 
average activation energy (i.e. the total area under, as 
well as the spread of the n(V) against V spectrum), will 
increase with ring size. 

8.3. Effect of bond strength (stretching force 
constant) 

A second factor affecting the form of the two-well 
potentials in glass will be the cat ion-anion bond 
strengths. For a given A - O - A  bond angle and A - A  
separation, inspection of our expresions for the poten- 
tial in which the O atom moves (Equations 14 to 19) 
show that the barrier height will be directly propor- 
tional to the bond strength (i.e. to the bond-stretching 
force constant). 

We now postulate that this is the only way in which 
the bond strength affects the two-well system, i.e. we 
assume that, for a given ring size, variations in bond 
strength do not affect the total number of distorted 
cat ion-cation spacings (loss centres) or the degree of 
distortion. At first sight the postulate can be criticized 
on the ground that as the A - O - A  bond force con- 
stant increases, so also does the energy required to pro- 
duce a given degree of bond angle or length distortion. 
However, against this it should be remembered that we 
do not have to account for this energy provision which 
is simply the excess energy associated with the amor- 
phous state and is available during the process of glass 
formation. This postulate is required to provide an 
explanation of why the compositional dependence of 
In(V) dV (and total number of loss centres) is strik- 
ingly different from that of the average activation 
bnergy. 

In summary of Sections 8.1 to 8.3 we will attempt an 
interpretation of our own acoustic loss data, as well as 
data on other oxide glass forming systems given in the 
literature on the criteria. 

(i) Both ~n(V)dV, and the total number of loss 
centres are proportional to oxygen density. 

(ii) In(V) d V, total number of loss centres, and the 
average activation energy 12 all increase with atomic 
ring size. 

(iii) For a given atomic ring size, l? also increases 
with bond-strength or stretching force constant. 

The possible extreme shapes of n(V) against/7" curves 
based on the permutation of the variables in (i) and (ii) 
are sketched in Fig. 19. 

It should be mentioned that, although there is a 
rough one-to-one correspondence, I 7- defined as an 
arithmetical average over the relaxation spectrum, i.e. 
I Vc(V) d V/Ic(V) d II, does not always agree with the 
average value determined from the peak-temperature 
frequency shift. With this in mind we take Rules (ii) 
and (iii) above to apply no matter how the average 
activation energy has been defined. However for 
simplicity, and as it is subject to the least compu- 
tational error, during the rest of this paper we discuss 
only the average energy determined from the peak 
loss, denoted by Vp. The possible explanation of the 
discrepancy between differently defined average acti- 
vation energies will be dealt with elsewhere. 

8.4. Application of the model to the 
interpretation of the compositional 
dependence of the low-temperature 
acoustic loss of Mo-P-O glasses 

By inspection of Figs 15 and 16, we note that the 
height of the loss peaks is fairly accurately pro- 
portional to C(V)dV and the total number of loss 
centres. All these quantities vary in a similar manner 
with MoO3 (mol %) and display the same disconti- 
nuities in composition gradient at about 53 and 
66mol % that we have found in the other physical 
properties of these glasses. In contrast, the average 
activation energy, Vp, and the (directly related) peak 
temperature are both monotonically decreasing func- 
tions of MoO 3 (mol %), displaying no evidence of 
discontinuities (Fig. 20), although the W curve dis- 
plays a clear inflexion at 53 tool %. 

For our interpretation we have adopted a quali- 
tative model of the structure of M o - P - O  glass whose 
details are presented elsewhere [13, 14, 17] and can be 
summarized as follows. 

(a) The oxygen density of the glass system exhibits 
a single pronounced minimum at 53mol % MoO 3 
content, the swing from maximum to minimum being 
about 6% (Patel and Bridge [13]). 

(b) As MoO3 content is increased gradually, the 
atomic ring size decreased to a minimum at 53 tool % as 
P606 (P205 oxide) rings are replaced by Mo2P203 
(metaphosphate) and Mo2P204 (orthophosphate) 

~I ' ,  Vl 

V #1, [Ol~, [U,]~ 

v<v1 

V 0'o>[0'ol 1 

I '""" '~176 ~ \\\''~>V1~>~1 

I/ 
[0]> [0 11 /:?>/:71 

- - I  n<n 1 ~1! V<V1 
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R<R 1 U,< 16/ol 1 

Figure 19 Schematic illustration of possible extreme shapes 
of n(V) against I7" curves. Note that for constant speed c, 
the n(V) V curves are to scale with the C(V)-V curves. 
Independent variables: R = ring size, [O] = oxygen den- 
sity, U 0 = binding energy. Dependent variables: n = 
[.on(V)dV, f" = So Vn(V)dV. These variables remain 
constant (R1, [01], [U0]l, nl and V 1, respectively) unless 
otherwise stated. 
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Figure 20 Compositional dependence of (a) the average activation 
energy, Vp, and (b) the peak temperature (Ph) at 44 MHz occurring 
in the low-temperature loss in molybdenum-phosphate glasses. 
The solid line is drawn through experimental data points and the 
dotted line is the theoretical curve predicted by Equation 39. 

rings. At higher molybdenum contents the ring size 
increases again as the mix of meta- and ortho- 

phosphate rings are replaced by Mo2P204 (pyrophos- 
phate) rings. A maximum is reached at the pyrophos- 
phate composition of 66 tool %, though the ring size is 
still substantially less than the sizes in the low 
molybdenum content glasses. Finally, further increases 
in molybdenum content lead to a further decrease in 
ring size as M o 2 0  2 ( M o O  3 oxide) rings replace pyro- 
phosphate rings. Overall the average ring size of the 
molybdenum-rich glasses (dominated by Mo20 rings) 
is substantially less than that in the phosphorus-rich 
glasses (dominated by P606 rings) [14]. 

(c) There are several kinds of M o - O  and P -O  
bonds in the M o - P - O  glass. However, in all cases the 
M o - O  force constants are only one half of the values 
of P -O force constants [16]. Thus increasing the 
MoO 3 content from 0 to 83 tool % gradually decreases 
the average stretching force constant in the glass to 
about one half the starting value. 

Examining Rules (i), (ii) and (iii) in the light of (a), 
(b) and (c) above, the general form of the com- 
positional dependence of n and Vp is readily under- 
stood. Thus Vp evidently follows predominantly the 
trend of the force constant. On the other hand, unaf- 
fected by the force constant, variations of n follow 
substantially the form of the ring size variations 
described in (b). The oxygen density variations will 
sharpen the minimum in these quantities at about 
53mo1% MOO3, but will flatten the maximum at 

about 63 tool % MoO 3 . However, oxygen density is of 
secondary importance compared with the ring size 
effect, given that the density changes by only 6% in the 
range 30 to 53mo1% whilst S c ( V ) d V  and n have 
changed by 30 and 50%, respectively. Ring sizes them- 
selves do not change by anything like this amount, but 
whereas only a linear dependence of n on oxygen 
density is plausible, a power-law dependence on ring 
size is admissable [15]. 

8.5. Application of the model to explain the 
different levels of average activation 
energy in glass systems based on 
different oxide glass formers 

Quantitatively our criteria suggest empirical relation- 
ships of the form 

N = constl R m (30) 

Vp = c o n s t 2 f  R m (31) 

N is the number of loss centres expressed as a percen- 
tage of the number of oxygen atoms per unit volume, 
R is an average ring size and f is a mean stretching 
force constant for a given glass. If we are to test these 
equations, estimates of R and f for every glass will 
have to be made. Bridge et al. [16] argued that for pure 
inorganic oxide glasses quite reliable estimates of 
average ring sizes could be obtained from a consider- 
ation of the known structures of crystalline analogues. 
Further they argued that these ring sizes fitted the 
relationship 

K = cons t3 f /R"  (32) 

where K is the bulk modulus, and a correlation coef- 
ficient of 99% with 

const3 = 0.0106, n = 3.84 (33) 

with f in N m -~, R in nm and K in Gpa. We 
shall assume that this relationship exists for multi- 
component oxide glasses (assumed to be three- 
dimensional networks) with the force content being 
averaged over many bond types and the ring size being 
an average over several types of ring (e.g. P606, 
M0202 ,  M o P 2 0 3 ,  Mo2P204  in M o - P - O  glasses). 
Then eliminating R between Equations 30 to 32 we 
have 

N = const4 (34) 

/ f\m/, 
Vp : const, f ~ K  ) (35) 

Representing the M o - P - O  glasses by the mole frac- 
tion composition formula xMoO3(1 -x)P205  we 
take the average force constant to be 

nlXfM_ 0 + n2(1 - x)fp_ 0 
f = (36) 

g/I + ///2 

where n~ is the number of Mo-O network bonds per 
formula unit in MOO3, n 2 is the number of P -O 
network bonds per formula unit of P205, andfM_o and 
fP o are the mean force constants for the respective 
types of network bond. Taking fP-o = 450nm-~, 
fM-O = 214nm-~, n, = 5 and n2 = 5 [17] the force 
constants of the eight glasses are as listed in Table II. 
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T A B L E  II  Empirical relations between low-temperature loss 
parameters of  M o - P - O  glasses, force constant f and bulk 
modulus k 

MoO 3 K f N (exp) Ntheo r ~pexp Vp theor 
(mol%)  (GPa) ( N m - ' )  (%) (%)* (eV) (eV)? 

0 25.3 450 3.43~ 3.09 0.145 ~t 0.163 
29.2 26.1 381 3.02 2.76 0.123 0.123 
37.5 26.9 362 2.76 2.63 0.111 0,112 
44.2 28.0 346 2.52 2.50 0.107 0,102 
47.4 28.7 338 2.32 2.44 0.102 0.097 
55.0 29.5 320 2.18 2.32 0.102 0.087 
61.6 27.2 304 2.05 2.37 0.091 0.085 
69.5 29.4 286 2.27 2.18 0.079 0.074 
80.8 32.0 259 2.13 1.96 0.069 0.060 

*Ntueo r = 0.589(f/K) ~ 
tV. th = 692 x lO-Sf ( f /K)  ~ p e o r  

Values obtained by extrapolation of  experimental data on 
M o - P - O  glasses. 

Taking also the corresponding bulk modulus values 
[14] and performing linear regression on InN a n d f / K  
one obtains 

N = 0.589(f/K) ~ (37) 

with a correlation coefficient of 80%. 
Linear regression performed on Vp and f ( f / K )  0"576 

yields a relationship 

Vp = 5.87 • l O - S f ( f / K )  ~ + 0.02eV (38) 

with a correlation coefficient of 98%. However, to 
obtain an empirical relation in the simpler proposed 
form of Equation 31 we determine the one unknown 
constant of this equation by fitting the latter to the 
experimental Vp value for the first member of the glass 
series (29% MoO3 content). The result is 

Vp = 6.92 x l O - S f ( f / K )  ~ eV (39) 

Apart from the correlation coefficients, however, the 
most important feature of Equations 37 and 39 is the 
fact that they predict correctly the general character of 
the compositional dependence of n and Vp (Table II, 
Figs 16 and 20). Thus both a minimum and a less 
pronounced maximum in n are predicted at roughly 
meta- and pyrophosphate compositions, respectively, 
although experimentally these turning points occurred 
at somewhat higher compositions. And in the case of 
Vp a slight inflexion is predicted around metaphos- 
phate composition, as found experimentally (Fig. 20) 
though of rather lower MoO 3 content. 

In computingffrom Equation 36 one obvious error 
is that the rupture ofP = O bonds to produce P-O-P,  
M o - O - P  bridging bonds, and the possible replace- 
ment of the M - O  dangling bond (in MOO3) by 
M o - O - P  and M o - O - M o  bridging bonds, have 
been neglected. (However, these two effects tend to 
cancel.) Possibly, one way of allowing for them is [14, 
16] to regard the glasses as mixtures of meta-, ortho- 
and pyrophosphate groups (in addition to M o O  3 and 
P205 groupings) in mole fractions which are deter- 
mined by the mole fractions in the composition for- 
mula. So plausibly a more accurate estimate of f is to 
be obtained by averaging over all the bond types in 
these extended structural groupings. This has been 
done [18] but the method is laborious and is not 
presented here. Little material change to the preceding 

results is obtained and we conclude that the approach 
cannot be justified until low-temperature loss data on 
other glass series become available to put the preced- 
ing model to more stringent tests. 

From inspection of Equations 34 and 35 it will be 
observed that f can in fact be eliminated to yield the 
relation 

Vp = const6 NO+n/m)K (40) 

Linear regression performed on ln(Vp/K) and InN 
yields the result 

Vp = 1.02 X I 0 - 3 N l ' 3 7 4 K  (41) 

with a correlation coefficient of 75%. 
The above considerations suggest that K and fmay  

be regarded as indicators of the size and shape of the 
low-temperature ultrasonic loss peaks in oxide glasses. 
The acquisition of further data on other glasses to test 
the proposed model seems well worth while. Although 
loss peaks for all the pure inorganic oxide glasses have 
been reported the model has not been applied to these 
data because, unfortunately, the "average activation 
energy" has not been defined consistently in the dif- 
ferent cases and more than one figure has been quoted 
for the energy in some cases. In any event it is better to 
test the model in the manner of this paper, i.e. by 
monitoring the loss as a function of gradual com- 
position changes, so that it is relative rather than 
absolute values of the loss parameters that are impor- 
tant. For this purpose work on a number of binary 
phosphate glass systems is in progress. 
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